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Humans predict liquid dynamics using probabilistic simulation, C. J. Bates, I. Yildirim, J. B. Tenenbaum, P. W. Battaglia
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Active Localization of Gas Leaks Using Fluid 
Simulation

Martin Asenov, Marius Rutkauskas, Derryck Reid, Kartic Subr, and 
Subramanian Ramamoorthy



Motivation

Detection and localization of gas leakages

It’s often dangerous and hard to people in...

while it’s crucial the leakage is found quickly.



Related work
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Related work

Using simulations as models
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Problem formulation
Motivating problem: localize a gas leakage in an open 
field using a UAV to collect gas concentration readings 
and estimate the wind

Challenges: very limited data, while 
accounting for wind dynamics, gas 
dispersion, etc.

Approach: Use fluid simulation as a model and align to the observed data in order to capture those dynamics

M. Asenov, M. Rutkauskas, D.T. Reid, K. Subr, S. Ramamoorthy, Active localization of gas leaks using fluid 
simulation, IEEE Robotics and Automation Letters, Vol 4(2), 2019.



Proposed approach

Approach: Use fluid simulation as a model and align to the observed data in order to capture those dynamics



Experimental setup

Offline experiments
(UAV)

Online experiments
(UAV)

Online experiments
(Noisy simulator)



Results - regression baselines
Offline experiments
     (with a UAV)

Online experiments
  (Noisy simulator)



Results - active sensing
Online experiments
   (Noisy simulator)

Online experiments
          (UAV)



Results - sensitivity analysis, speed and accuracy
Offline experiments
          (UAV)

Offline experiments
          (UAV)



Multi-species environmental gas sensing

M. Rutkauskas, M. Asenov, S. Ramamoorthy, D.T. Reid, Autonomous multi-species environmental gas sensing 
using drone-based Fourier-transform infrared spectroscopy, Optics Express, 2019. 



Multi-species environmental gas sensing
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Vid2Param: Modelling of Dynamics Parameters 
from Video

Martin Asenov, Michael Burke, Daniel Angelov, Todor Davchev, Kartic Subr 
and Subramanian Ramamoorthy



Reasoning about dynamics in unknown environmentsReasoning about dynamics from video



Model overview



Results - SysID and forward predictions



Results - varying parameters and real videos



Results - robot experiments
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SuctionBot: Autonomous suction of fluids for 
medical applications (ongoing) 

Martin Asenov, Kartic Subr and Subramanian Ramamoorthy



Motivation



Challenging for a robot?

?



Conclusion



Conclusion



Conclusion - find out more on www.masenov.com



Conclusion - find out more on www.masenov.com

Robotics can mitigate the lack of experience of manipulating objects we have as people by 
learning policies in simulator, while accounting for the mismatch with respect to the real world.
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