Robot Learning Using
Physics-Informed Models

(Utilise for more efficient Machine Learning in
Robotics)

Martin Asenov

Supervisors:
Dr. Subramanian Ramamoorthy and Dr. Kartic Subr



ImageNet moment in Robotics?

Deeplab Y3 xception_cityscapes_trainfine (GTX380M) !N'P['J_f_%l ZE
Frediction time: 404ms (2.5 fps] AVG: 365ms (2.7 fps)




Recent impressive advancements
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Related work - overview

Simulation as an engine of physical scene understanding, P. W. Battaglia , J. B. Hamrick, and J. B. Tenenbaum
Humans predict liquid dynamics using probabilistic simulation, C. J. Bates, . Yildirim, J. B. Tenenbaum, P. W. Battaglia
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Related work - overview

Position Based Fluids, M. Macklin, M. Maller
Unified Particle Physics for Real-Time Applications, M. Macklin, M. Miller, N. Chentanez, TY Kim
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Related work - overview

Interaction Networks for Learning about Objects, Relations and Physics, P. Battaglia, R. Pascanu, M. Lai, D. J. Rezende, K. Kavukcuoglu
A Compositional Object-Based Approach to Learning Physical Dynamics, M. B. Chang, T. Uliman, A. Torralba, J. B. Tenenbaum
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Related work - overview

Computer Model Calibration Using High-Dimensional Output, D. Higdon, J. Gattiker, B. Williams and M. Rightley

Galileo: Perceiving Physical Object Properties by Integrating a Physics Engine with Deep Learning, J. Wu, J. J. Lim, I. Yildirim, W. T. Freeman, J. B.
Tenenbaum
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Related work - overview

Near-Optimal Sensor Placements in Gaussian Processes: Theory, Efficient Algorithms and Empirical Studies, A. Krause, A. Singh, C. Guestrin
Multi-Robot Active Sensing of Non-Stationary Gaussian Process-Based Environmental Phenomena ,R. Ouyang, K. Hsiang Low, J. Chen, P. Jaillet
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Related work - overview
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Motivation

Detection and localization of gas leakages

It's often dangerous and hard to people in...

while it's crucial the leakage is found quickly.
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Regression Approaches
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Related work

Using simulations as models

[1] Vergassola, Massimo, Emmanuel Villermaux, and Boris I. Shraiman. "Infotaxis’ as a strategy for searching without gradients." Nature 445.7126 (2007): 406.
[2] Sanchez-Garrido, Carlos, Javier Monroy, and Antonio Javier Gonzalez-Jimenez. "Probabilistic localization of gas emission areas with a mobile robot in indoor environments." (2018).
[3] Monroy, Javier, et al. "GADEN: A 3D gas dispersion simulator for mobile robot olfaction in realistic environments." Sensors 17.7 (2017): 1479.



Problem formulation

Motivating problem: localize a gas leakage in an open Challenges: very limited data, while
field using a UAV to collect gas concentration readings accounting for wind dynamics, gas
and estimate the wind dispersion, etc.
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Approach: Use fluid simulation as a model and align to the observed data in order to capture those dynamics

M. Asenov, M. Rutkauskas, D.T. Reid, K. Subr, S. Ramamoorthy, Active localization of gas leaks using fluid
simulation, /[EEE Robotics and Automation Letters, Vol 4(2), 2019.



Proposed approach
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Experimental setup
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Results - regression baselines
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Results - active sensing

Online experiments
(Noisy simulator)
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Results - sensitivity analysis, speed and accuracy
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M. Rutkauskas, M. Asenov, S. Ramamoorthy, D.T. Reid, Autonomous multi-species environmental gas sensing
using drone-based Fourier-transform infrared spectroscopy, Optics Express, 2019.



Multi-species environmental gas sensing
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Reasoning about dynamics from video

Arm movement
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Model overview
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Results - SysID and forward predictions
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Results - varying parameters and real videos
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Results - robot experiments

Ball position

Random Policy 8/35 (23%)
Random Policy (2x) | 10/35 (29%)
Vid2Param 27135 (77%)
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SuctionBot: Autonomous suction of fluids for
medical applications (ongoing)

Martin Asenov, Kartic Subr and Subramanian Ramamoorthy
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Challenging for a robot?

22?2 This new robot
vacuum cleaner
really ... sucks!
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Conclusion - find out more on www.masenov.com
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Active
acquisition
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Robotics can mitigate the lack of experience of manipulating objects we have as people by
learning policies in simulator, while accounting for the mismatch with respect to the real world.
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