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• Gaussian Processes for nonlinear regression
• Gaussian distribution – univariate and multivariate
• Definition of Gaussian processes
• Inference from data
• Two-dimensional input space

• Spatio-temporal phenomena
• Definition and applications
• Modelling with Gaussian Processes

• Summary and questions
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Gaussian distribution
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Gaussian distribution
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Gaussian distribution
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Gaussian distribution
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Gaussian distribution



Gaussian processes: Theory and applications in predictive modelling of spatiotemporal phenomena 11

Gaussian distribution
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Sampling
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Rejection Sampling
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Samples from a bivariate Gaussian
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Alternative visualizing of samples
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Alternative visualizing of samples
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Visualizing higher dimensional Gaussian
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Visualizing higher dimensional gaussians

Each line is one sample from a 6D Gaussian
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Visualizing higher dimensional gaussians

• The lines resemble nonlinear regression

Each line is one sample from a 6D Gaussian
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Visualizing higher dimensional gaussians

• The lines resemble nonlinear regression
• Close points seem to be correlated to each other

Each line is one sample from a 6D Gaussian
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Visualizing higher dimensional gaussians

• The lines resemble nonlinear regression
• Close points seem to be correlated to each other
• We can measure the variance at each point

Each line is one sample from a 6D Gaussian
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Generating the covariance matrix

The kernel specifies how the entries in the covariance matrix are generated.

‘Squared exponential’ kernel

Gaussian process (GP) is fully specified by a mean and covariace function.

Formal definition: A Gaussian process is a collection of random 
variables with the property that the joint distribution of any finite 
subset is a Gaussian
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Extending to more dimensions

Each line is one sample from a 40D Gaussian
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Another change in notation

Each line is one sample from a 40D Gaussian

Y

X

• Remap axis
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Another change in notation

Each line is one sample from a 40D Gaussian

• Remap axis
• We don’t have to increase the dimension of the X axis 

with the dimension of the Gaussian
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Another change in notation

Each line is one sample from a 40D Gaussian

• Remap axis
• We don’t have to increase the dimension of the X axis 

with the dimension of the Gaussian
• We don’t have to take points equally spaced to each 

other
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Another change in notation

Each line is one sample from a 40D Gaussian

• Remap axis
• We don’t have to increase the dimension of the X axis 

with the dimension of the Gaussian
• We don’t have to take points equally spaced to each 

other
• We can remove the points, just for clarity
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Another change in notation

Each line is one sample from a 40D Gaussian

• Remap axis
• We don’t have to increase the dimension of the X axis 

with the dimension of the Gaussian
• We don’t have to take points equally spaced to each 

other
• We can remove the points, just for clarity
• Use colors for the different samples, again for clarity
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Varying hyperparameters of the kernel
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Varying hyperparameters of the kernel
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Varying hyperparameters of the kernel
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Varying hyperparameters of the kernel
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Varying hyperparameters of the kernel
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Varying hyperparameters of the kernel
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Varying hyperparameters of the kernel
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Varying hyperparameters of the kernel
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Varying hyperparameters of the kernel
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Varying hyperparameters of the kernel
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Varying hyperparameters of the kernel
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Varying hyperparameters of the kernel
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Infererence from data
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Infererence from data
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Two-dimensional input space
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Spatio-temporal phenomena

Def. Event depended and changing with respect to time and space

Examples: 
• Weather temperature
• Wind speed
• Plankton densities in sea
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Modelling with Gaussian Processes

Limitations:
We can take only limited number of measurements

Where do we collect measurements to have the most accurate predictions?
Once we have the measurements, how do we do the prediction?
How certain are we of our prediction?
How can we exploit the structure of the problem?

• Useful priors from our kernel function (close locations have similar temperature)
• Measuring the uncertainty of the field (how accurate our prediction is in a given place)
• Picking next point to predict (knowing where to place an extra sensor to improve our prediction the 

most)
• Lazy evaluation (measure the weather in one place, update our prediction, pick the most uncertain 

place, measure the weather in that place, and so on)

Let’s say we want to make a prediction of the weather in Scotland

Gaussian processes have the following desirable properties:



Gaussian processes: Theory and applications in predictive modelling of spatiotemporal phenomena 50

Applications
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Not enough time to cover…

• Using GPs for classification and reinforcement learning

• Connections with neural networks

• Different kernel functions

• Efficient calculations of the covariance matrix
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The code is available on Github

• Different visualizations
• Inference from data
• 1D and 2D regression

https://github.com/masenov/gaussian-processes-introduction

https://github.com/masenov/gaussian-processes-introduction
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Thank you for your attention

Any questions?


