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Abstract

Intuitive physics, or naive physics, is our ability to predict outcomes of a variety
of basic physical interactions and to reason about the dynamics of a scene. It is an
important ability people have, a crucial part of our intelligence, that helps us deal
with the complexity of the surrounding world. Different fields have tried to answer
parts of the many questions that one could ask - what is the underlying mechanism
allowing us to do this type of inference, why do we experience certain illusions,
how we can mimic our ability in software systems and robots. This report focuses
on the third question by analyzing the newest approaches in machine learning and
robotics.
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Chapter 1

Introduction

Understanding physics and dynamics is a fundamental part of our intelligence,
ability to reason and perform complicated actions. Knowing where objects are
going to be in a few moments time is central to evaluation of a situation and
reacting accordingly. Examples of this include passing a busy street, catching a
frisbee or hitting a tennis ball with a racket [21I]. Thus if we want to build soft-
ware systems or robots able to truly understand the world around them, instead
of performing single vision tasks like recognition, segmentation and depth esti-
mation, they need to able to understand the dynamics in the scene and perform
inference for short and long term future moments.

Exactly how we do this type of inference about the world has been an active
research topic in psychology, philosophy and, with developments in computation
and hardware, robotics and machine learning. The ability of humans to predict
the outcomes of different physical interactions like watching objects falling, col-
liding, sliding, etc. has been referred to as naive or intuitive physics. Different
studies have argued how these computations could possibly be done in our brain,
raising the question if they follow Newtonian mechanics. Due to errors humans
experience in their judgment of different scenarios, it was suggested they do not.
However recent studies suggest that our brain follows a "noisy Newtonian” frame-
work, where Newton’s laws and noisy observations are combined in a probabilistic
model [10].

In the next few chapters, we examine different approaches and models developed,
aimed to solve the problem of physical inference, based on single or sequences
of images. With the development of the topic, two possible solutions emerged -
trying to map a scene we observe to a physical engine and infer different latent
variables or using purely data-driven approaches to predict a property or future
state of the scene based on visual observation. Interesting recent work also tries
to combine both of the approaches, limiting their weaknesses and exploiting their
strengths.
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Figure 1.1: Dynamic scene from the volleyball finals at Rio 2016. Even
from a static image, people can do a remarkable amount of reasoning of where
different people and objects are going to be is subsequent moments. We know
that player 4 is going to hit the ball, players 4, 6 and 15 recently jumped and are
going to fall now, player 12 is going to the left, player 1 is going to the right and
SO on.



Chapter 2

Background work

In this section we briefly comment on two developments which gave the necessary
tools for conducting the work presented in the next chapter. First, we cover
neural networks and more specifically Convolutional Neural Networks, which led
to a revolution in image recognition. Secondly, we discuss game engines.

2.1 Convolutional Neural Networks

Convolutional Neural Networks (CNN) [I8] is a custom type of neural network,
designed to mimic how our own visual system works. The first few layers of the
CNN are a repeated sequence of convolutions followed by a max-pooling layer.
After stacking a couple of these layers, a CNN is usually followed by a few fully
connected layers. An example CNN for predicting handwritten digits can be seen
in fig. 2.1l CNNs have come a long way since their first successful application in
document recognition. By combining efficient GPU calculations [17] and dropout
[14], CNN were applied to large-scale image recognition tasks such as ImageNet
[8], beating previous results. It’s been shown that no matter what output we train
for if we are using images as an input to a CNN, the first few layers always seemed
to be very similar, resembling Gabor filters and color blobs [27]. Thus taking pre-
trained convolutions layers, and training just the fully connected layer on top for
the specific task chosen, works well. The stacked convolution/max-pooling layers
extract features from a given image, from edges and colors to increasingly more
complicated patterns. Therefore we get an effective representation of an image,
which can be used for training of any problem we want, using another neural
network on top. This method of ’compressing’ an image while preserving useful
information about it has been used in different methods discussed in the next
chapter.
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Figure 2.1: Convolutional Neural Network. One of the big successes of
CNN [18] was automatic recognition of handwritten digits and letters. Applied
in post offices all around the world, it is part of the reason why sending letters
nowadays is so cheap. Since then CNNs have been applied to many problems in
vision and natural languages.

2.2 Game and physics engines

Game engines and computer animation have reached the state where they can be
used for generation of lifelike images and videos. As a tool, they can be exploited
in a couple of different ways. First of all, since we do the simulation, we have all
the information we would want for the scene - current physical properties of all
the objects, future and past states, etc. Secondly, we have unlimited exploration
possibilities, by generating scenes with new physical properties. Generate a se-
quence of images as the simulations run, and having ground truth information, is
a powerful tool, used in different methods. Examples of sample scenes, generated
from different engines can be seen in fig[2.2]
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Figure 2.2: Different game and physics engines. (a) Blender [5] (b) Bullet
Physics [7] (c) three.js [23] (d) Panda3D [12] (e) Open Dynamics Engine [22] (f)
Unity [25]
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Current methods

In this section we explore the state of the art methods for physics understanding in
trivial situations. Three methods are examined - inference using physics engines,
data-driven approaches using neural networks and a combination between the
two. Example problems on which different approaches were developed and tested

can be seen in fig.
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(e) (f)

Figure 3.1: Physical interactions scenarios. A list of some of the experiments
performed for testing different algorithms (a) A stack of 10 cubes - predict if the
cubes will fall [4] (b) Sliding objects on inclined plane - infer physical properties
and final position of the object [26] (¢) Dropping liquid over different obstacles -
predict the amount that is going to fall on the left and on the right [2] (d) Bouncing
balls in a box - predict the movement of the balls [3] (e) n-body problem - predict
the movement of the bodies[3] (f) Springs collide with a rigid body - predict the
movement of the spring [3]
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3.1 Inference using physics engines

People have a remarkably good intuition about physics and dynamics in different
situations. Yet, we often experience different illusions and inaccuracies in our
judgment. This lead to the idea that although we follow Newtons’ laws, we do
it so in a noisy framework [I0]. Following that idea and with the development
of modern graphics engines, the ”intuitive physics engine” (IPE) was introduced
in [4]. This work presents a biologically plausible way of doing fast physical in-
ference, based on graphics and simulations tools and Bayesian modeling. Their
work shows that even though this differs from ground truth physics, it is remark-
ably consistent with the intuition people have. It is claimed that probabilistic
simulations are key to our efficiency in reason about the dynamic world we live
in, even when encountering unknown situation.

The experimental setup in [4] is a tower of 10 randomly stacked blocks, simulated
using [22]. The IPE takes as an input a scene configuration, as well as three
parameters - o, noise in the 3D location of the blocks, ¢, the magnitude of external
forces like breeze, vibration or bump and u, physical properties of the object like
mass, elasticity or surface roughness. The output of the IPE for a given scene is
calculated by running a number of simulations based on those hyperparameters
and averaging their outcome to produce the final result. The IPE performance is
compared to people’s intuition on two questions about the tower of blocks - is it
going to fall and in which direction. Further experiments include varying object
masses, object shapes, physical obstacles and applied forces. Several observations
were drawn from performing those experiments. The output of the IPE (under
the best-fit parameters, o = 0.2, ¢ = 0.2) and people’s judgments were highly
correlated. On the other side when compared to ground truth physics (o = 0,
¢ = 0) the correlation was much lower (Pearson coefficient of p = 0.64 for the
ground truth physics, against p = 0.92 for the IPE). This coincides with illusions
people experience of surprisingly balanced objects. If we use the ground truth
physics model we will predict that the objects will stay balanced. However,
both TPE and people’s intuition classify those scenarios as highly likely to fall
due to the high number of similar unbalanced configuration. The performance
of the IPE is compared to a purely model-free method based on regression of
22 geometric features like tower’s height, height of the tower’s center of mass,
average height of a block, etc. This data-driven approach has been shown to
perform consistently worse than the IPE model. While the authors don’t argue
that geometric features are important, from their experiment they can’t provide
a general-purpose alternative to IPE.

A general disclaimer is made that each physics engine suffers from three fun-
damental weakness. It is based on simulation, generating every scene from the
previous one, rather than calculating analytic solutions. Secondly, the IPE is
probabilistic, running a stochastic simulation to represent uncertainty about the
scene. Finally, it is also approximate, trading between precision and accuracy.

Building upon this idea, similar methods were used to model the people’s intuition
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of liquid dynamics [2]. The work made two contributions. They gathered exper-
imental data of how humans reason about liquid dynamics. The work extended
the model presented in [4] by adding models of fluids. By simulating liquids the
paper was able to test physical properties like stickiness and viscosity hold true
within the IFE model. Participants in the experiment with randomly generated
3D scenes with liquid position above randomly generated obstacles. The task
was to predict how much liquid would fall in each of the two basins located at
the bottom of the obstacles. Two types of liquid were tested - water like and
high-viscosity, honey-like. From the experiments conducted, it was shown that
simulation models drastically outperform non-simulation models. For the pur-
pose, the authors implemented a simple heuristics model as well as CNN trained
on thousand generated scenes. IFE is shown to have the highest correlation with
the intuition of the participants in the experiments compared to both of those
models, as well as the ground truth physics. Moreover, the stickiness is shown
to improve the performance of the model, suggesting that people are sensitive to
those properties of the objects when observing them.

Another work aims to develop a generative model for solving the problem of
inferring different physical properties of objects and understanding dynamics in
videos and static images [26]. Their model consists of three parts. Every object
in their model is represented as a rigid body with shape, position in space, mass
and friction. Using these properties the object is simulated in a physics engine,
in this case, Bullet [7], generating velocities and positions for the object. Finally,
objects in real-world videos are tracked and their velocities compared to the ones
from the model using a likelihood function. The method is shown to work well
for the example problem of sliding objects on an inclined surface. However, the
question of how this would scale up remains unanswered.

3.2 Data-driven approaches using deep learning

Methods presented in the previous section try to model the world using a physics
engine and try to infer the different parameters through simulation. However,
some physical properties could be a lot easier inferred from simple observations.
As an example, it might be easier to estimate that a feather will fall slower than
a stone, just based on texture, instead of estimating different physical properties.
This idea is developed in [I]. The paper discusses an approach for deriving model
of intuitive physics by manipulation tasks and learning. The authors use CNNs to
predict a poking action based on start and goal state image of objects. The model
is learned from repeated simulations beforehand. The authors argue that this is
a better approach than ”simulator-based” model as in [I6], due to the parameter
estimation errors and different functional forms of the parameterizations. It is
possible that infants learn to do similar inference, based on all the experience they
gathered playing with random objects. Finally, the recent successes of neural nets
might make this training possible. The two major issues, with a model based on
interaction and learning, are the large amounts of experiments required to gather
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the necessary data, as well as the difficulty of future visual state predictions.
This work tackles these problems by collecting 400 hours of videos of 50K pokes,
used for training of two models - for forward and inverse kinematics. Two neural
networks are trained together, the first having I, and I;;; and outputting ay,
the second taking I;,; and a; and outputting I;. The network follows a similar
approach to [11], where one network tries to fake an image, the other tries to
discriminate it. In our case one of the networks tries to come up with the results
of an action given current scene, the other tries to predict the action given initial
and end state of an image.

NPE applied on object 3
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Figure 3.2: Using neural networks for intuitive physics models. (a)
Mapping between static image (top part of the network) and one of 12 Newtonian
scenarios (bottom part of the network) (b) Forward and inverse kinematics. Two
neural networks are trained simultaneously. The forward model predicts an image
on the next time step, given the image at the current time step and the applied
action. The inverse model predicts the applied action based on the images for the
current and next time step (c) Predicting stability of tower of blocks only based
on the observed image. The network can also show the pixels in the image that
contributed the most for making the prediction (d) Modeling physical interactions
in a generic way

Another data-driven, non-simulation approach was presented in [19]. Here the
task was similar to the one [4] - participants had to predict the stability of stacked
blocks. Custom scenes were generated using graphics engines, Bullet [7] and
Panda3D [I3]. This provided the train and test images for the experiments as
well as the ground truth labels (is the scene stable or not). A CNN is trained,
on the generated images as an input and the stability labels as an output. A
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Global Average Pooling (GAP) layer is added to the feature maps generated
by the last convolutional layer, instead of traditional fully-connected layer [20].
This allows for extracting the Class Activation Map (CAM), visualizing regions
from the image where an unstable prediction is being made [28]. Those focused
regions appear to be correlated to where the fall begins to happen, although not
any specific details are given in the paper. Using the classifier it is possible to
generate new images, test if they are stable, and use a robot (in this case Baxter)
to stake cubes while keeping the balance.

Some work even tackled the complicated problem of approximating dynamics
based on a single static image [2I]. The authors use 12 Newtonian scenarios
(ﬁg. to represent all dynamics that could happen to an object - sliding, gliding,
hanging, lifting, etc. Given an object in an image, the object is mapped into one of
the scenarios, after which a physical simulation using game engine is performed.
The result of the simulation gives us information how the object in the image
would move in the nearby moments. The mapping between an object in an
image and one of the Newtonian scenarios is done with a custom neural network
architecture, trained on a dataset, VIsual Newtonian Dynamics (VIND), collected
by the authors. The data consists of 6000 videos aligned with the Newtonian
scenarios and 4500 still images with their accompanying ground truth dynamics.
A neural network based on the AlexNet architecture [17] is used for processing the
input image and a mask showing the object of interest. Another network based
on [24] is used for the videos generated from a game engine based on the different
Newtonian scenarios. Both of the networks, through series of convolutions and
max pooling, followed by fully-connected layers, generate a latent representation
of the query image and the different frames from the game engine videos. Those
latent representations are compared using cosine similarity, which maps the image
to the most probable Newtonian scenario. This approach is compared to another
network, which is trained directly on the images as input and their trajectories in
the 3D space. Mapping to Newtonian scenarios and simulating them to predict
dynamics is shown to significantly outperform direct mapping between images
and trajectories. However, the paper leaves some doubt as not enough details
are given for the training of the second network. Although solving the same
problem, the two networks have different architectures, using different data and
loss function. Thus the comparison between them is somewhat weak, as there are
simply too many differences between them and it is not clear what the reason for
lower accuracy is. The paper also does not address the problem what happens in
more complicated scenarios involving more objects and a different scenario from
one of the 12.
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Figure 3.3: 12 Newtonian scenarios. A lot of basic physics interactions can
be represented as one of those 12 scenarios. Using a neural network we can learn
a mapping from an image, with specified query object, to one of those scenarios.
Then running a short physical simulation, we can predict the future trajectory of
the queried object.

Predicting dynamics can be treated as a time series problem and some work using
recurrent neural networks addresses this problem [J], in the context of playing
billiards. The goal is to predict the future n time steps, based on the last 4 frames
of the visual scene of the table together with all the applied forces. A custom
CNN is used again, and three different models are compared. The simplest one,
constant velocity (CV) model is based on the velocity from the last known time
step. The authors argue that since collisions with other balls or hitting a wall
are relatively infrequent this is a good baseline. However this does not appear
to be the case from the examples given, where we can see the hitting a wall or
ball, are indeed fairly often even in the simplest scenarios. T'wo neural network
models are implemented - frame-centric and object-centric. The frame-centric
(FC) model takes as an input the visual and force field stream and outputs next
frame. The object-centric (OC) model on the other hand individually models
every single object, taking visual stream with a mask covering the object and
the forces that act on it, for every object on the table. Then the displacements
for each object are computed based on which the next frame is generated. The
structure of the neural network used is a combination of AlexNet [I7] and LSTM
[15]. The first few layers are convolutional/max-pooling, following by a fully-
connected (encoder) layer and finally two layers of LSTM units. As expected
the frame-centric and object-centric neural networks perform significantly better
than the constant velocity model, the difference between the two increasing as
we predict a further time step. In this model again we can predict desirable
actions by generating forces to the different objects, feeding them through the
neural network to, generating resulting visual stream, comparing it to the one we
desired and picking the best action based on that.

3.3 Learnable physics engines

As [6] summarizes the two commonly used approaches when dealing with prob-
lems in intuitive physics. The top-down approach formulates the problem as an
inference of physics parameters in a symbolic physics engine. The bottom down
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approach, on the other hand, aims to directly match observations to motion pre-
dictions or physical properties. Both of the approaches come with their strengths
and weaknesses. Top-down approaches can generalize over different scenarios, as
long as the physical event observed can fit within the framework. If they don’t
however, we either might get inaccurate results or modify the physics engine in
order to accommodate the new cases. On the other hand, bottom-up scenarios
often don’t require any structure to be predefined. However, this comes at the
cost of reduced generality and difficulty of transfer learning.

The work presented in [3] aims to combine the two approaches by introducing
a general approach for a learnable physics engine. The model presented, named
interaction network, takes graphs as an input and performs object and relation
reasoning using neural nets. It is a very general approach, shown to work well in
n-body problems, rigid-body collisions and non-rigid dynamics. However, results
were only shown in 2D scenarios. The main idea behind the work is to mimic
a physical simulator - to generate a sequence of states by repeatedly applying
physics laws, taking into account the interaction between the objects, approxi-
mating the effect of dynamics over time. Unlike a physics engine, however, those
rules are not specified a priori but learned from data as we observe the objects.
The core of the network consists of two functions which are learned from train-
ing data. ¢g, which given all the sets of sender object o1, and receiver object
02+ and their relation 7 at time step ¢, outputs all the effects e;11. ¢o takes an
input the receiver object 0, all computer effects e;y; on him and outputs 02441.
The network was trained on synthetically generated data representing n-body
problems, bouncing balls in a grid and strings. Results were compared against
baseline neural net with two 300-length hidden units, taking as in input a flat-
ten vector of all the input data. While alternative models were mentioned, no
benchmark comparisons were made with any of them, instead of only using an
in-house developed algorithm. Moreover, even for the fairly simple 2D problems
posed, the network was trained on fast amounts of data - 2000 scenes over 1000
time steps. No estimates of the amount of data needed for more dynamic inter-
actions and 3D scenarios were made, or if it’s going to be possible to extend the
model to accommodate the increased complexity. Two suggestions are made for
transforming the IN into a recurrent neural network or probabilistic generative
model to accommodate more accurate long-term predictions or inference about
unknown parameters of the objects and relations between them. But again no
specific details about how this can be accomplished are given.

Some of those issues were addressed in [6]. Objects are defined in a general
way and the relations between them trained from data. In this way we get the
modularity of a physics engine and ability to completely train the model from
data, without building a physics model a priori. To more formally specify the
model, we have all the objects 01, 02, 03, 04... and they change their state based
on some physics program. If we capture all the information about the object such
as position, velocity, mass, gravitational and pairwise forces, etc. we can treat

the process as Markovian (fig3.4).
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Figure 3.4: Markovian representation of a physics engine. [0]

Structuring and learning the interactions between the objects is one of the main
contributions in [6]. Three different models are benchmarked - a Neural Physics
Engine (NPE), No-Pairwise (NP) and LSTM [I5]. Comparison between their
structure can be seen in figf3.5l The NPE model makes three contributions -
pairwise factorization, neighborhood mask and function composition. All these
contributions aim to make the model general, but learnable at the same time, as
well as modular with scalability in mind. The only difference between the NPE
and NP models is the removed pairwise factorization in the NP, for benchmarking
purposes and evaluation. The networks are compared on a dataset of bouncing
balls with obstacles. NPE is shown to outperform both LSTM and NP for tasks
like predicting future states and inferring latent properties like mass. The network
also deals well with unseen worlds, where it still makes an accurate prediction
even when we increase the number of balls or change the obstacles. However, it
is worth pointing out that this is still the same scenario, just with an increased
number of objects. It will be interesting to see transfer learning between different
objects and completely different scenarios.
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Figure 3.5: NPE vs NP vs LSTM.



Chapter 4

Future work

In the previous chapter we described some of the state of the art methods for
reasoning about physical scenes. The field has still not managed to address some
critical issues. A lot of the work compares the performance to somewhat weak
baselines - constant velocity model or simple heuristics. A lot of work claims
that method A is better than method B, but when a simulation approach is
compared to a neural network, for example, it is not feasible to argue which
is better due to their fundamental differences. A neural network may perform
more poorly due to the need of more data, a simulation approach may perform
better because we are in the domain where those exact scenarios are defined in
the engine. Moreover, different papers compare their results to different problems
and datasets, making it difficult to have an across-the-board comparison. A lot of
the work shows promising results but on small and trivial datasets. The question
still remains how this would work in real life scenarios, where dynamics and
interactions between objects are often more complicated. A valuable alternative
in the future might using some of the newest developed games (ﬁg, where
the scenes presented a lot more life like and complex. It will be interesting to see
more hierarchical models, were interactions are learned in an increasingly more
complicated fashion, with real knowledge transfer between objects.

17
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Figure 4.1: Gameplay screenshots of GTA V. The development of computer
graphics lead to the development of lifelike games with thousand of objects and
possible interactions. Using this games as a basis for running more complicated
experiments, might be an interesting area of exploration in the future.



Chapter 5

Summary

Intuitive physics is an exciting area of research with a lot of advances happening
in recent years, based on developments from other fields like computer graphics
and neural networks. In this report, we explore how we can model naive physics
in a computer system. We start by motivating the problem and then proceed
to explore current methods and their effectiveness. Three broad approaches are
reviewed - inference using a physical engine, data-driven algorithms and recent
work combining both. All three of the methods are shown to work well on simple
scenarios like bouncing balls and n-body problems. Different implementation for
those methods were proposed and tested on variety of problems and datasets.
It appears that both structured models with inference of physical properties as
well as data-driven approaches could work. However certain some problems still
remain open - knowledge transferability, hierarchical representations, scaling up
to real-world problems.

19
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