

Abstract

Extracting 3D information from a scene is both a

fundamental problem in Computer Vision and one of the

field's most valuable applications. A lot of solutions exists

using specialized hardware like 3d cameras, different

radar systems, Kinect, etc. However, all of them has trade-

offs in terms of their accuracy, price and limitations that

are usually unsatisfactory for commercial applications. In

this paper we present a method for extracting 3D

information from cameras that aims to partially mitigate

the problems that prevent them to be the cheap and

reliable solution for the stereo vision problem. Our

solution is based on Convolutional Neural Networks

which recently gained popularity for the problem of visual

recognition. We modify their architecture to be better

suited for depth map extraction and test them on both

single and multi-view camera images. Furthermore, we

make use of computer graphics generated data and

experiment with transferring our results from animated

pictures to the real ones.

1. Introduction

The Computer Vision community have proposed a lot of

methods for extracting 3D information using image

processing. Different methods include geometry models

based on key points matching, volumetric and photometric

stereo. However, all those methods suffer from the same

weakness - they take into account only one visual cue at a

time instead of combining and weighting the information

provided by all of them. That is crucial not only because

we miss on slew of information but because, as many

psychological studies suggest humans do exactly that when

they wrestle with the same problem. On top of that, there is

whole another factor the previously mentioned methods

totally miss out on - the image statistics. As human beings,

we make all kinds of assumptions about the world we live

in that serve us well. Those are based upon the repeating

patterns we face in our everyday lives and are extremely

useful part of our visual pipeline. Due to the complexity of

the matter however, that remains something that hasn't

been touched upon in the context of 3D reconstruction.

Our motivation to use CNNs for 3D reconstruction is

based upon the fact that CNNs are a good way to catch

those statistics, as the training process naturally picks the

factors that really matter and weight them to determine

how much they do according to the particular image we

observe. We argue that although strictly mathematically

speaking at least 2 pictures from different angles are

needed to get accurate depth perception, combinations of

the previously mentioned factors can give a really good

estimate of the 3D scene, even from a single picture. That

reasoning is supported by our own biology. We can get

decent depth perception, even if we close one of our eyes.

Our biology also dictates that although motion is very

important input for our visual system, analyzing static

images is more than enough for depth perception most of

the time. Therefore, we decided to leave motion for future

development. Last but not least, we want to make the

argument that although sometimes we can only obtain

approximations and relative distances from the factors

mentioned, they are more than enough for the most tasks

where 3D reconstruction is used.

Generating disparity maps using Convolutional Neural Networks

Martin Asenov

The University of California, Irvine

masenov@uci.edu

Dimitar Dimitrov

The University of California, Irvine

ddimitro@uci.edu

Figure 1. Perspective, relative size, occlusion and texture

gradients all contribute to the three-dimensional appearance of

this photo.

1.1. Introduction continued

We regard to our experiment as way of exploring a

radically different application of Convolutional Neural

Networks. Looking at papers from the past 2-3 years one

observes unpresented raise in successful application of

convolutional neural networks. However, one can also

argue that big part of problems people solve with CNNs

these days are more or less connected to classification.

Research is conducted on a more and more data, obtaining

ever improving results mostly thanks to deeper models,

trained on GPUs and super computers which experience

exponential growth in computational power. Although,

those advancements emerge from the research on neural

networks for image classification they open the door for

the use of CNNs for different purposes, as well.

2. Dataset

For our training we used a recently released computer

generated dataset called MPI Sintel Flow Dataset [1]. It

consists of 1064 frames, with resolution 1024x436. The

dataset consist of different types of training data such as

optical flow, depth and camera motion, segmentation and

disparity maps. The data comes in two flavors - motioned

blurred and pre-cleaned. In our experiments we trained and

tested with the harder set of images in which the motion

blur was added. For out final CNN we used only the

disparity maps part of the dataset but we want to use some

of the other types of information in our future experiments.

3. CNN architecture

For our experiments we used Matlab library called

“MatConvNet” [3]. We decided to use late fusion

architecture as described in [2]. Initially, we decided to

feed the left and right camera images, convolve them with

all the pre-trained filters learned on the problem of object

classification on Imagenet and combine the results by the

means of two fully connected layers. For the course of

training we fixed the Imagenet filter and we used them as

they are. At first we tried using rectify linear activation

functions. No matter what picture we were feeding into the

network, it was only outputting either random noise or a

disparity map of all zeros. Thinking about the problem, we

realized that a simpler linear activation function suits our

problem better as it increases monotonous, which

represents depth better than the sudden flatness of rectified

linear. Due to the high resolution of the pictures and the

relative small dataset, we decided that it is unfeasible to

train on the whole images. Instead we trained our neural

network on random 224x224 patches from the frames,

adding different perturbations like flipping the images. In

this way we were able to get a lot more training data and

also reduce the complexity of our model. Even so, we

didn’t accumulate that big of a dataset. Given its diversity

however, we still obtained good results. In our experiments

we used batched Stochastic Gradient Descent with

momentum [6]. We ran experiments on different hyper

parameters for four epochs, and then we trained the most

successful one for another fifty (momentum of 0.95 and

learning rate of 0.0001).

4. Results

Figure 3. In our architecture we fed left and right camera image

through pre-trained filters layers. We fed the output to a fully

connected layers with linear activation functions and a final

layer a disparity map.

Figure 2. Reconstruction of the 3D shape of object from

lighting.

Figure 4. Initial results

5. Challenges

5. Challenges

We came across numerous challenges throughout the

project. First of all, we had to extend MatConvNet so we

can feed two pictures as input, instead of one. Second, we

created custom final layer error function that does SSD

over the disparities maps. Moreover, we had to experiment

with many different architectures and parameters. Last but

not least, we came across a lot of GPU and CPU memory

issues. The authors of the library suggest using at least of

8GB of video memory. Because we had only two available

in our GPU we had to make some compromises between

efficiency and memory usage, but managed to squish our

neural network in the place available. Even after that we

continued to run out of memory, because of improper

freeing up of the memory and temporary variables. At the

end we came up with quite ‘hacky’ solution of using batch

script to train the network for only limited number of

epochs, saving the model, restarting Matlab, loading the

model back in memory.

6. Further improvements

Numerous papers [4] have concluded that first few filter

layers are pretty generic and are not required to be trained

for every newly introduced classification problem.

However, because of the different nature of the problem

we are trying to solve, it will be actually interesting to see

if there is going to be a significant increase of the

performance for our if we train our own filters. We also

want to expand our model so we can feed a sequence of

more than two frames, thus introducing motion cues into

the mix. Moreover, the project can be expanded in the

direction of generating different types of information from

the images like optical flows or camera motions, both

available in the dataset. Last but not least, it would be nice

to work with a bigger dataset. Although our data

augmentation helped training our model quite successfully,

we expect to produce better results with more data.

Figure 5. Input to our CNN (left), Ground truth disparity (top

right), Output of our CNN (bottom right)

Figure 6. Training after 4 epochs, 0.95 momentum, 0.0001

learning rate. Ground truth disparity (left), our result (left)

Figure 7. Training after 20 epochs, 0.95 momentum, 0.0001

learning rate. Ground truth disparity (left), our result (left)

Figure 8. We experiment with different input as well. Instead of

feeding left and right camera images, we fed the same 2D

picture to our neural network. As you can see the results are

almost identical. This is another proof towards our suggestion,

that in order to generate 3D information, a lot of times just a

single picture is enough.

Figure 9.Sample images and their corresponding disparity maps from the MPI Sintel Dataset. Although they are really diverse

and well suited for our purpose, having only 1064 really limits what can be learned by a neural network. However even with

such a small dataset, through taking random smaller patches, we were able to produce promising results. In the future we are

looking forward to train a similar model with a bigger dataset, and more powerful hardware to be able to fully extract all the

features necessary for accurate 3D predictions.

References

[1] Butler, D. J. and Wulff, J. and Stanley, G. B. and Black, M.

J., A naturalistic open source movie for optical flow

evaluation, European Conf. on Computer Vision (ECCV),

A. Fitzgibbon et al. (Eds.), Springer-Verlag, Part IV, LNCS

7577, oct, 611--625, 2012

[2] Karpathy, A., Toderici, G., Shetty, S., Leung, T.,

Sukthankar, R., Fei-Fei, L.:Large-scale video classication

with convolutional neural networks. In: Proc. CVPR(2014)
[3] A. Vedaldi and K. Lenc, MatConvNet - Convolutional

Neural Networks for MATLAB", arXiv:1412.4564, 2014

[4] M. Oquab, L. Bottou, I. Laptev and J. Sivic "Learning and

Transferring Mid-Level Image Representations using

Convolutional Neural Networks" CVPR 2014

[5] Zhu, X., Vondrick, C., Ramanan, D. Fowlkes, C.: Do we

need more training data or better models for object

detection? BMVC 2012

[6] Orr, Genevieve, CS 449 Neural Networks, Momentum,

http://www.willamette.edu/~gorr/classes/cs449/momrate.ht

ml

