
 

 

 

Abstract 

 

Extracting 3D information from a scene is both a 

fundamental problem in Computer Vision and one of the 

field's most valuable applications. A lot of solutions exists 

using specialized hardware like 3d cameras, different 

radar systems, Kinect, etc. However, all of them has trade-

offs in terms of their accuracy, price and limitations that 

are usually unsatisfactory for commercial applications. In 

this paper we present a method for extracting 3D 

information from cameras that aims to partially mitigate 

the problems that prevent them to be the cheap and 

reliable solution for the stereo vision problem. Our 

solution is based on Convolutional Neural Networks 

which recently gained popularity for the problem of visual 

recognition. We modify their architecture to be better 

suited for depth map extraction and test them on both 

single and multi-view camera images. Furthermore, we 

make use of computer graphics generated data and 

experiment with transferring our results from animated 

pictures to the real ones.  

 

1. Introduction 

The Computer Vision community have proposed a lot of 

methods for extracting 3D information using image 

processing. Different methods include geometry models 

based on key points matching, volumetric and photometric 

stereo. However, all those methods suffer from the same 

weakness - they take into account only one visual cue at a 

time instead of combining and weighting the information 

provided by all of them. That is crucial not only because 

we miss on slew of information but because, as many 

psychological studies suggest humans do exactly that when 

they wrestle with the same problem. On top of that, there is 

whole another factor the previously mentioned methods 

totally miss out on - the image statistics. As human beings, 

we make all kinds of assumptions about the world we live 

in that serve us well. Those are based upon the repeating 

patterns we face in our everyday lives and are extremely 

useful part of our visual pipeline. Due to the complexity of 

the matter however, that remains something that hasn't 

been touched upon in the context of 3D reconstruction.   

Our motivation to use CNNs for 3D reconstruction is 

based upon the fact that CNNs are a good way to catch 

those statistics, as the training process naturally picks the 

factors that really matter and weight them to determine 

how much they do according to the particular image we 

observe. We argue that although strictly mathematically 

speaking at least 2 pictures from different angles are 

needed to get accurate depth perception, combinations of 

the previously mentioned factors can give a really good 

estimate of the 3D scene, even from a single picture. That 

reasoning is supported by our own biology. We can get 

decent depth perception, even if we close one of our eyes. 

Our biology also dictates that although motion is very 

important input for our visual system, analyzing static 

images is more than enough for depth perception most of 

the time. Therefore, we decided to leave motion for future 

development. Last but not least, we want to make the 

argument that although sometimes we can only obtain 

approximations and relative distances from the factors 

mentioned, they are more than enough for the most tasks 

where 3D reconstruction is used. 
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Figure 1. Perspective, relative size, occlusion and texture 

gradients all contribute to the three-dimensional appearance of 

this photo. 

 



 

 

 

 
 

 

 

 

1.1. Introduction continued 

We regard to our experiment as way of exploring a 

radically different application of Convolutional Neural 

Networks. Looking at papers from the past 2-3 years one 

observes unpresented raise in successful application of 

convolutional neural networks. However, one can also 

argue that big part of problems people solve with CNNs 

these days are more or less connected to classification. 

Research is conducted on a more and more data, obtaining 

ever improving results mostly thanks to deeper models, 

trained on GPUs and super computers which experience 

exponential growth in computational power. Although, 

those advancements emerge from the research on neural 

networks for image classification they open the door for 

the use of CNNs for different purposes, as well. 

2. Dataset 

For our training we used a recently released computer 

generated dataset called MPI Sintel Flow Dataset [1]. It 

consists of 1064 frames, with resolution 1024x436. The 

dataset consist of different types of training data such as 

optical flow, depth and camera motion, segmentation and 

disparity maps. The data comes in two flavors - motioned 

blurred and pre-cleaned. In our experiments we trained and 

tested with the harder set of images in which the motion 

blur was added. For out final CNN we used only the 

disparity maps part of the dataset but we want to use some 

of the other types of information in our future experiments. 

3. CNN architecture 

For our experiments we used Matlab library called 

“MatConvNet” [3]. We decided to use late fusion 

architecture as described in [2]. Initially, we decided to 

feed the left and right camera images, convolve them with 

all the pre-trained filters learned on the problem of object 

classification on Imagenet and combine the results by the 

means of two fully connected layers. For the course of 

training we fixed the Imagenet filter and we used them as 

they are. At first we tried using rectify linear activation 

functions. No matter what picture we were feeding into the 

network, it was only outputting either random noise or a 

disparity map of all zeros. Thinking about the problem, we 

realized that a simpler linear activation function suits our 

problem better as it increases monotonous, which 

represents depth better than the sudden flatness of rectified 

linear.  Due to the high resolution of the pictures and the 

relative small dataset, we decided that it is unfeasible to 

train on the whole images. Instead we trained our neural 

network on random 224x224 patches from the frames, 

adding different perturbations like flipping the images. In 

this way we were able to get a lot more training data and 

also reduce the complexity of our model. Even so, we 

didn’t accumulate that big of a dataset. Given its diversity 

however, we still obtained good results. In our experiments 

we used batched Stochastic Gradient Descent with 

momentum [6]. We ran experiments on different hyper 

parameters for four epochs, and then we trained the most 

successful one for another fifty (momentum of 0.95 and 

learning rate of 0.0001). 

 

 
 

 

 

 

 

4. Results 

 

 

 

 

 

Figure 3. In our architecture we fed left and right camera image 

through pre-trained filters layers. We fed the output to a fully 

connected layers with linear activation functions and a final 

layer a disparity map. 

 

Figure 2. Reconstruction of the 3D shape of object from 

lighting. 

 

Figure 4. Initial results 

 



 

 

 
 

 

 

 

 

 

 

 

5. Challenges 

 

 

 

 

 

 

 

 

 

 

 

 

5. Challenges 

We came across numerous challenges throughout the 

project. First of all, we had to extend MatConvNet so we 

can feed two pictures as input, instead of one. Second, we 

created custom final layer error function that does SSD 

over the disparities maps. Moreover, we had to experiment 

with many different architectures and parameters. Last but 

not least, we came across a lot of GPU and CPU memory 

issues. The authors of the library suggest using at least of 

8GB of video memory. Because we had only two available 

in our GPU we had to make some compromises between 

efficiency and memory usage, but managed to squish our 

neural network in the place available. Even after that we 

continued to run out of memory, because of improper 

freeing up of the memory and temporary variables. At the 

end we came up with quite ‘hacky’ solution of using batch 

script to train the network for only limited number of 

epochs, saving the model, restarting Matlab, loading the 

model back in memory.   

6. Further improvements 

Numerous papers [4] have concluded that first few filter 

layers are pretty generic and are not required to be trained 

for every newly introduced classification problem. 

However, because of the different nature of the problem 

we are trying to solve, it will be actually interesting to see 

if there is going to be a significant increase of the 

performance for our if we train our own filters. We also 

want to expand our model so we can feed a sequence of 

more than two frames, thus introducing motion cues into 

the mix. Moreover, the project can be expanded in the 

direction of generating different types of information from 

the images like optical flows or camera motions, both 

available in the dataset. Last but not least, it would be nice 

to work with a bigger dataset. Although our data 

augmentation helped training our model quite successfully, 

we expect to produce better results with more data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Input to our CNN (left), Ground truth disparity (top 

right), Output of our CNN (bottom right) 

 

Figure 6. Training after 4 epochs, 0.95 momentum, 0.0001 

learning rate. Ground truth disparity (left), our result (left) 

 

Figure 7. Training after 20 epochs, 0.95 momentum, 0.0001 

learning rate. Ground truth disparity (left), our result (left) 

 

Figure 8. We experiment with different input as well. Instead of 

feeding left and right camera images, we fed the same 2D 

picture to our neural network. As you can see the results are 

almost identical. This is another proof towards our suggestion, 

that in order to generate 3D information, a lot of times just a 

single picture is enough. 

 



 

 

 

 
 

 
Figure 9.Sample images and their corresponding disparity maps from the MPI Sintel Dataset. Although they are really diverse 

and well suited for our purpose, having only 1064 really limits what can be learned by a neural network. However even with 

such a small dataset, through taking random smaller patches, we were able to produce promising results. In the future we are 

looking forward to train a similar model with a bigger dataset, and more powerful hardware to be able to fully extract all the 

features necessary for accurate 3D predictions. 

 



 

 

References 

[1] Butler, D. J. and Wulff, J. and Stanley, G. B. and Black, M. 

J., A naturalistic open source movie for optical flow 

evaluation, European Conf. on Computer Vision (ECCV), 

A. Fitzgibbon et al. (Eds.), Springer-Verlag, Part IV, LNCS 

7577, oct, 611--625, 2012 

[2]  Karpathy,  A.,  Toderici,  G.,  Shetty,  S.,  Leung,  T.,  

Sukthankar,  R.,  Fei-Fei,  L.:Large-scale video classication 

with convolutional neural networks. In: Proc. CVPR(2014) 
[3] A. Vedaldi and K. Lenc, MatConvNet - Convolutional 

Neural Networks for MATLAB", arXiv:1412.4564, 2014 

[4] M. Oquab, L. Bottou, I. Laptev and J. Sivic "Learning and 

Transferring Mid-Level Image Representations using 

Convolutional Neural Networks" CVPR 2014 

[5] Zhu, X., Vondrick, C., Ramanan, D. Fowlkes, C.: Do we 

need more training data or better models for object 

detection? BMVC 2012 

[6] Orr, Genevieve, CS 449 Neural Networks, Momentum, 

http://www.willamette.edu/~gorr/classes/cs449/momrate.ht

ml 

 

 


