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Abstract— Videos provide a rich source of information, but
it is generally hard to extract dynamical parameters of interest.
Inferring those parameters from a video stream would be
beneficial for physical reasoning. Robots performing tasks in
dynamic environments would benefit greatly from understand-
ing the underlying environment motion, in order to make future
predictions and to synthesize effective control policies that use
this inductive bias. Online physical reasoning is therefore a
fundamental requirement for robust autonomous agents. When
the dynamics involves multiple modes (due to contacts or
interactions between objects) and sensing must proceed directly
from a rich sensory stream such as video, then traditional
methods for system identification may not be well suited. We
propose an approach wherein fast parameter estimation can
be achieved directly from video. We integrate a physically
based dynamics model with a recurrent variational autoen-
coder, by introducing an additional loss to enforce desired
constraints. The model, which we call Vid2Param, can be
trained entirely in simulation, in an end-to-end manner with
domain randomization, to perform online system identification,
and make probabilistic forward predictions of parameters of
interest. This enables the resulting model to encode parameters
such as position, velocity, restitution, air drag and other physical
properties of the system. We illustrate the utility of this in
physical experiments wherein a PR2 robot with a velocity
constrained arm must intercept an unknown bouncing ball with
partly occluded vision, by estimating the physical parameters of
this ball directly from the video trace after the ball is released.

I. INTRODUCTION

There is an ever growing need to perform robotic tasks in
unknown environments. Reasoning about observed dynamics
using ubiquitous sensors such as video is therefore highly
desirable for practical robotics. Traditionally, the complexity
of this reasoning has been avoided by investing in fast
actuators [18] [37] and using very accurate sensing [27].
In emerging field applications of robotics, the reliance on
such infrastructure may need to be decreased [20], while
the complexity of tasks and environment uncertainty has
increased [15]. As such, there is a need for better physical
scene understanding from low-cost sensors and the ability
to make forward predictions of the scene, so as to enable
planning and control.

Recent advances have enabled video prediction conditioned
on observations [31] and reasoning about complex physical
phenomena [47]. Video streams provide a rich source of
information, but it is often challenging to acquire the
compressed structured representations of interests. Techniques
for system identification, originally developed for process
control domains, are aimed at this problem [33]. There are a
number of different approaches to estimating parameters [25],
and sometimes even model structure [32], from observed
data.

Acquiring reduced representations of the environment
and performing system identification have historically been
disjointly solved, despite the rich contextual information
images often contain. This may lead to slower inference
or even failure of the optimization should the state space
model reduction be inaccurate. Yet, solving the problem
jointly brings a set of practical challenges. First, it is difficult
to acquire the necessary training data to cover the possible
variations of the task of interest and generalize to unseen data.
Secondly, a model needs to learn to perform probabilistic
inference of parameters of interest and generation from a
sequence of images, and capture long-term dependencies.
From a practical robotics perspective, the model needs to be
sufficiently fast to be able to perform system identification
on-the-fly, while performing inference directly from images.

In this paper, we focus on the case where a robot must
perform robust system identification online, directly from a
rich sensory stream such as video (including the implicit tasks
of detecting and tracking objects). We pose the problem as
learning an end-to-end model, where we regress from videos
directly to parameters of interest. Furthermore, we structure
the learned model so as to be able to make probabilistic future
predictions in the latent space, to enable appropriate action
selection. This allows for interacting in relatively unknown
environments when system identification must be performed
on-the-fly for the successful completion of a task.

We present a model that enforces physical conformity
between videos and dynamical parameters of interests. We
integrate an analytic simulator with a recurrent latent model
[12] by introducing an additional loss term for encoder-
decoder mapping from a given sensory input (vision) to
physical parameters and states (position, velocity, restitution
factor, gravity, etc. in a parametric description of a physics-
based model). We show that such a model can be trained
with suitable domain randomization [48] in simulation and
deployed in a real physical system. This model, which we call
Vid2Param, allows for forward predictions envisioning possi-
ble future trajectories based on uncertainty in the estimate of
the physical parameters. We demonstrate that such a model
can indeed perform accurate system identification directly
from videos by demonstrating that we achieve similar levels
of performance as traditional system identification methods,
which have access to ground truth starting trajectories. We
perform experiments on simulated and real recorded videos of
a bouncing ball with different physical properties. To illustrate
the utility of this capability, we demonstrate this model on
the task of intercepting a bouncing ball with a relatively slow
moving robot arm and standard visual sensing.
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Fig. 1: Overview and experimental setup. We are interested in reasoning about the dynamics in an environment, by using
a single video stream as a sensory input. To demonstrate the utility of our approach, we use a slowly actuated robotics arm
to perform a ’stopping a bouncing ball’ experiment, where the physical properties of the ball or height of the table are not
known a priori and occlusions are present. Our model is able to perform online inference of the parameters of interests and
generate plausible future trajectories. (Please refer to supplementary video for additional results.)

II. RELATED WORK
A. System Ildentification

System identification (SysID) is concerned with the
problem of determining the structure and parameters of a
dynamical system, for subsequent use in controller design.
The best developed versions of system identification methods
focus on the case of linear time-invariant (LTI) systems,
although almost all of these methods have also been extended
to the case of nonlinear and hybrid dynamical systems. With
these more complex model structures, the computational
complexity of identification can be relatively high even for
moderately sized data sets.

Examples of system identification procedures that could
be applied to our problem domain, including the additional
step of reducing model order, include the Eigen system
realization algorithm [26] and Balanced POD (BPOD) [43]
(which theoretically obtain the same reduced models [35]),
and the use of feedforward neural networks [10]. BPOD can
be viewed as an approximation to another popular method,

Balanced truncation (BT) [44], which scales to larger systems.

Another way to approach the problem of identification is
frequency domain decomposition [7]. Recent approaches in
this vein include DMD [30] and Sindy [8], which allow for
data driven, model-free system identification and can scale to
high-dimensional data. When performing SysID directly from
a rich sensory stream like video, it is not always clear what
the optimal reduced representation should be [1]. We exploit
the fact that a physics based model of objects can provide
useful regularisation to an otherwise ill-posed identification
problem.

B. Simulation alignment

When a parametric system model is available, simulation
alignment can be performed to identify the parameters of
the system. A standard approach is to perform least squares
minimization or maximum likelihood estimation, for instance

computing best fit parameters to align simulator traces to
observed data [50]. When simulation calls are expensive, a
prior over the parameter space can be enforced, e.g. Gaussian
Processes, and Bayesian Optimization can be used [42] [41]
[34] [5]. Our approach is closely related to [52] as we use
supervision during the training phase of our model, and then
use this learned approximation at test time. We also employ
domain randomization while training our model [39] and our
work follows a similar line of reasoning to that of [9], which
aims to align a simulator to real world observations as the
model is being trained. We focus on the problem of aligning
a model to online observations at test time, for predictive
purposes.

C. Learnable Physics Engines

There has been increasing interest in learnable physics
engines - for example learning complex factorization (at the
object or particle level) from data [36] [6], using particle
based networks for fluid dynamics [45] and in robotics [13].
By representing the problem in terms of a set of learnable
components (graph representing objects/particle and relations,
Navier Stokes equations, linear complementary problem for
the above mentioned tasks) a physics engine can be learned
from raw data. Similar approaches have been shown to scale
to video data [49]. We explore the complementary problem of
system identification (with an analytical or learned simulator),
and propose a direct optimization approach by learning an
inverse probabilistic physics engine. This builds upon ideas
presented in [50], where an analytical simulator is used with
traditional system identification approaches. Closely related
work is presented in [40], where surface properties are learned
using Physics and Visual Inference Modules.

A related question to learning interactions between objects
is that of learning a state space system to represent these.
This has been explored for individual objects [28] [17], by
using Kalman and Bayes filters for learning. State models
and predictions have recently been explored in the context



of videos involving multiple objects [22] through the use
of Spatial Transformer Networks [23] and decompositional
structures for the dynamics, as well as integrating the
differential equations directly into a network [24].

D. Variational Autoencoder

Variational Autoencoders (VAEs) [29] have been exten-
sively applied to image and video generation [16] [22].
Recently, VAEs have been used in reinforcement learning to
improve generalization by learning a master policy from a set
of similar MDPs [4]. Closely related work is that of [2] where
Variational RNNs are used to learn ‘residual physics’ [51]
[46]. The addition of loss terms to the reconstruction and KL
error terms have also been proposed, allowing for enforcement
of multiple desired constraints [21] [3]. We extend this line of
work, by demonstrating that such constraints can be applied
in a recurrent model to satisfy physics properties.

III. VID2PARAM FOR ONLINE SYSTEM IDENTIFICATION
FROM VIDEOS

Problem formulation Given a set of sensory observa-
tions x1..—1, we are interested in predicting future observa-
tions z; using a low-dimensional dynamics representation

P(Zt|21:t71)-

p($t|$1;t—1) = /p(xt\zt)p(Zt|21:t—1)p(2’1:t—1|$1:t—1)dZ

= /p(xt|zgaat)p(szet‘zi:t—laelzt—l)

P (2141, 011 |21:0-1) d2

(1
Here, we decompose the latent space z = [z/,6] into
the physical dynamics parameters of interest, 6, and a
remaining z’ term, used for image reconstruction and to
capture potentially un-modelled effects. We illustrate how
this model can be learned in an end-to-end fashion from
videos, and how we can use the predictions in the latent
space for model predictive control.

Variational Recurrent Neural Networks We implement
the inference process above using a modified recurrent VAE
(VRNN) [12]. A VRNN consists of an RNN encoding the
dynamics of the sequence, and a VAE conditioned on those
dynamics, by including the hidden state of the RNN at each
step. As shown in fig[2] the variational auto encoder "¢ (7
denotes the trainable parameters of the neural network) takes
in a latent representation of the input ¢Z(z;), in addition
to the hidden state of an RNN, h;_;. The encoder network
then produces the mean and variance components, ftepc,; and
Oenc,t Tespectively, of a multivariate Gaussian distribution,
q, that are also conditioned on h;_;, thereby capturing
information about the dynamics of the sequence until ¢:

= N(,U/enc t;dlag( Oenc t))
enc (907- (xt) ht—l)

Similarly, the generative component of the VAE is also
expanded by including the hidden state h;_1:

p (xt|2§ta Toy) =N (,udec t, diag (Uﬁec,t)) >

where figec i, Taeer = 02 (07 (24) , hi—1)

q(Zt|x§taZ<t)

where Menc,ty Oenc,t =

2

3)

This means that the prior is no longer a standard normal
distribution A (0,1) as in the case of a vanilla VAE, but is
specified by a network conditioned on the hidden state h;_1:

p (Zt‘x<ta Z<t) =N (/J/PTZOT ts dzag ( Oprior, t))
where Hprior,ts Oprior,t = Wgrwr (ht—l)
Finally, the RNN updates its hidden state h; with a
transition function fy, (with parameters 1) by taking in a latent
representation of the input ¢Z(z;) a sample from Z(z;), and
the previous hidden state h;_1:

4)

he = fy (05 (x¢) , 0% (2¢) s hie—1) (5)

VAEs are trained by minimising an evidence lower bound [29].
Given the VRNN modifications, the overall loss, including
a Kullback-Leibler (KL) divergence and reconstruction loss
term, becomes:
T
Eqz<T|a<T) [Z logp (zt]2<t, <t) —
t=1 (6)

KL (q (zt|v<t, 2<t) [|p (2w <t, 2<1)) |-

In summary, the VRNN is a modified VAE that makes use of a
learned low-dimensional dynamics model to make sequential
predictions. However, the VRNN provides no guarantees that
the latent representation is meaningful, and as a result is
unsuited for use in control or for system identification.

Vid2Param We propose combining the encoder-decoder
factorization with dynamics modelling in the latent space z,
conditioned on parameters of interest, §. We introduce an
additional loss to the standard VRNN to encourage encoding
of physically meaningful parameters, by including a Gaussian
negative log likelihood [38] loss between part of the latent
space z and the physical parameters 6§ we are interested
in (e.g., gravity, restitution, position, etc., in the case of a
bouncing ball). The loss terms are scaled with non-negative
numbers «, S and y and we let Ny represent the size of the
parameter vector.

T
Eqz<T|2<T) [Z (04 logp (z¢|z<t, T<t) —
t=1
BKL (¢ (Zt|$<t»Z<t) P (zt|r<t, z<t)) +

9% - Zénciﬁ 2
72 —1n 2m) ln (( Oenc t)2) + u))}
(7

2(O—énc,t) 2
Given trained networks, we can now perform probabilistic
inference of physical parameters from sensory data such as a
sequence of images using the factored portion of the latent
space directly.

P(92|x§t) = N(Mfenc,tv Uénc,t) (8)

Additionally, we can sample plausible future extrinsic
properties (eg. positions) by recursively updating the model
predictions to generate future states.

P(0§|x<t7 9<t) = N(:u‘;)rior,ta O—;rior,t) (9)
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Fig. 2: Technical details and notation. We propose an end-to-end model for performing system identification directly from
unstructured input, such as video. We based our model on a Variational Recurrent Neural Network (VRNN) [12]. To encode
the physical properties of interests we propose an additional Gaussian negative log likelihood loss between the parameters of
interest and part of the latent space. The inference and generation overview of the model (left) and the training procedure at

each frame (right) can be seen in the figure.

As a final modification, we exclude x; from the recurrent
step, since all necessary information is already present in z;.
This speeds up the prediction in the latent space, as x does
not need to be reconstructed and fed back into the network at
every step. As such we can make recursive future predictions
entirely in the latent space,

he = fu (97 (24)  hea) - (10)

To summarise, the contributions of this paper include:

1) Extension of the VRNN model with a loss term to
encode dynamical properties.

2) Enabling faster future predictions in the latent space,
along with uncertainty quantification through the iden-
tified parameters.

3) Evaluation of speed and accuracy of identification,
against alternate approaches to system identification

4) Demonstration on a physical robotic system, in a task
requiring interception of a bouncing ball whose specific
physical parameters are unknown a priori, requiring
online identification from the video stream.

IV. EXPERIMENTS

First, we perform a series of experiments on simulated
videos, when ground truth is explicitly available. We compare
our method against existing system identification methods,
evaluating speed of estimation and accuracy of the identified
parameters. Next, we evaluate our method on a set of real
videos. Finally, we perform a physical experiment involving
online system identification from a camera feed.

A. Setup

We use a bouncing ball as an example hybrid dynamical
system. This is a particularly useful example, as the dynamics
of the ball vary depending on the ball state, making system
identification particularly challenging from high dimensional

sensor data using classical techniques. The governing dynam-
ics of the bouncing ball can be described using the following
set of ordinary differential equations:

1
s = So + ot + 55152, §=g—d Free fall
§= $) = —esy_,when $Y < 0;sf =0 Bounce an
§¢ =rsf 1, when 5/ =0 Rolling

We use s,$,5 for the current position, velocity and
acceleration respectively, e is the coefficient of restitution and
r the rolling resistance. Additional dynamic effects are often
observed such as air drag d = —c$+/(5%)% + (s¥)2/m, where
c is the drag constant and m is mass. Thus the acceleration
becomes § = g + d, where g is the gravitational force
(g® = 0). As such, the system is completely determined
by the initial state of the system s,$,§ and its physical
properties e, r,m,c,g € 6. It should be noted that the real
world behaviour of any specific ball could deviate from this
model depending on its shape, initial spin (Magnus effect),
the presence of wind, and so on.

We make the following assumptions: 1) there is a single
moving object, the bouncing ball 2) the ball bounces off a flat
surface. We do not assume to know the physical properties
of the ball, the height of the surface or the exact velocities of
the ball, and we use a single low quality camera for sensing.

We use a parallel adaptive ODE solver to simulate data
described by eq[IT] We use these simulated trajectories
to generate a sequence of images. We generate 10000
training and 100 test videos, with 200 timesteps/10 seconds,
28 x 28, with e € [0.6,1.0], g € [-6.81,—12.81],d €
[0.05,0.0005], 7 € [0.0,0.7]. We split the parameters into 10
sub-ranges and alternately use them for training and testing,
so no parameters used in the training data are available in
the test data.

For the real videos and robot experiment, we trained



a separate model with 5000 videos, 100 x 50 with 75
timesteps/10 seconds and the same physical parameters.
Additionally, we add motion blur based on the velocity and
black-out part of the frames to account for some of the
missing/noisy data typically exhibited when using low-cost
cameras. Additionally, we randomize the height of the plane
on which the ball bounces. Our encoder-decoder network
follows a similar architecture to [11] and for the RNN we
use a standard LSTM network. We set « = 1, § = 1 and
7 = 10 throughout our experiments (eq[7). We use an NVidia
1080 Ti for training and laptop NVidia Quadro M2000M
GPUs for testing the model. We use MSE as an accuracy
metric throughout the paper and normalize positions and
parameters.

B. System identification

In this experiment, we evaluate the speed and accuracy of
the proposed method against different simulation alignment
approaches. We evaluate the likelihood of the observed trajec-
tory with respect to simulated trajectories by performing MLE
estimation (similarly to [50]). We sample 2000 trajectories
by placing a uniform prior over the physical parameters and
compare the simulated trajectories against those observed. We
select the parameters which generated the least error between
the trajectories, and compare these against parameters that
generated the observed trajectory.

Secondly, we extend this by imposing a Gaussian Process
prior over the parameters of interest and performing Bayesian
Optimization [19] [41]. We use Expected Improvement as
an acquisition function and use 20 optimisation steps. The
baselines have access to the initial velocity, n number of
positions (as such we don’t need a tracker as in [50]) and an
optimized ODE solver for sampling.

In contrast, our trained model receives only the video
as an input, and no other parameters. Speed and accuracy
benchmarks are shown in fig[3] It can be seen that our method
has similar or better performance, despite not having access
to the initial ground truth trajectory of the ball.

rest grav
. B\ - — |
S 0.25\ S0.2 >4
5 \ 57 bo
] DL — —— ours
0.00 0.0
1 100 200 1 100 200
#frames #frames
drag roll Evaluation time
10°
. _04 A @
s 0.25 s A /A\ é 103 /"/
I I °
o 92 £ 10t //_
0.00 -
1 100 200 1 100 200 1 100 200
#frames #frames #frames
(a) Accuracy (b) Speed

Fig. 3: Performance of different system identification
methods with variable number of observed frames. (a)
Overall error of the predicted normalized parameters (b)
Speed of computation. We denote [50] as ’lsq’ and [19] as
"bo’.

C. Forward predictions

Here, we evaluate the future prediction accuracy as frames
are observed. In addition to previous baselines in Sec/IV-B|
we add an additional non-parametric model for system iden-
tification that approximates responses using a set of modes
with different frequencies [30]. Three sets of predictions are
evaluated - after 20, 50 and 100 frames respectively - until the
end of the video at 200 frames, as shown in figld] We visualize
example model predictions and their associated uncertainty
in figl5] Importantly, the proposed approach becomes more
certain as additional frames are observed, highlighting the
probabilistic nature of Vid2Param.
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Fig. 4: Accuracy of forward prediction. The accuracy is
evaluated after 20, 50 and 100 frames are observed, predicting
for the next 100 frames. The DMD error is scaled down 1k,
50 and 5 times respectively for predictions after 20, 50 and
100 observations. We note [50] as ’1sq’, [19] as "bo’ and [14]
as ’dmd’.
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D. Varying physical properties and sensitivity analysis

In this experiment, we evaluate how well Vid2Param can
estimate physical parameters when they are changing as
the video is unrolled (using a model where parameters are
assumed to stay constant throughout the video). Therefore,
this is a test of robustness or sensitivity of the model.
We generate a new dataset, wherein the parameters change
every 50 frames (2.5 seconds) in a given video. The results



are shown in fig[§] and show that the proposed model
can infer changing parameters, provided there is enough
system excitation to facilitate this. For example, gravitation
coefficients can only be inferred if the ball is bouncing, while
the rolling coefficient can be inferred if the ball is rolling.
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Fig. 6: System Identification from video with varying
physical parameters. The physical parameters of the bounc-
ing ball change every 50 frames (4 times per video). We
plot ground truth (green), predicted samples (red), and the
predicted - mean (blue). Given enough excitation, our model
can detect the change in the parameters.

We also perform sensitivity analysis over multiple condi-
tions. First, we test for extrapolation over unseen parameters
by training on the first half of the range for different
parameters - €g. €rqin € [0.6,0.8] (for restitution). We
evaluate performance for increasing parameter deviations,
Aparams, in the test data - e € [0.8,1.0]. Secondly,
we evaluate the performance when training with increasing
additive parameter noise. Finally, we train with simpler
physics model (fixed drag and rolling coefficient) and test how
well we can estimate gravity and restitution when testing with
the full model as the video is unrolled. Results can be seen in
fig[7] with extrapolation performance slowly decaying outside
of training regions and consistent performance even with
large percentage of noise added to the training parameters.
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Fig. 7: Sensitivity analysis. (Left) Extrapolation of parame-
ters (Middle) Training with noisy data (Right) Training with
less accurate model - fixed drag and rolling coefficient.

E. Real videos

Here, we evaluate how well our method can scale to real
videos. We record a set of videos, lasting between 1-5 seconds,
of different types of bouncing balls - rubber, tennis and ping-
pong balls. Since the exact physical properties of the balls
are not available, we instead use the accuracy of the forward
predictions as an evaluation metric. We compare the last ten
positions of the ground truth position of the ball, with the
forward predictions of a model as the video is unrolled. Here,
we compare our method against [50], where we generate
5000 uniform samples of all physical parameters, horizontal

and vertical velocities, horizontal and vertical position in a
small region around the starting location of the ball - in order
to account for some of the noise in the real videos. In fig[§]
we show the convergence of our method for different types
of balls, as well as the accuracy of the forward predictions
as the video is observed.
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Fig. 8: Experiments with real videos. We evaluate the
performance of our method on real videos with bouncing balls
with different physical properties (rubber, tennis, ping-pong).
As the video is unrolled we compare the future predictions
for the very last 10 frames of each video (the long term
prediction accuracy) as explicit ground truth over the physical
parameters is not available (a) Example model predictions
for the three different types of balls, overlaid on the extracted
positions from the images (b) Accuracy of the last 10 forward
predictions as the video is observed. We denote [50] as ’Isq’.

F. PR2 Robot experiments

Finally, we evaluate the accuracy and speed of our method
in an experiment where the PR2 robot uses its arm to
intercept a bouncing ball from a visual feed, using a
standard low-cost camera as sensory input (please refer to
supplementary video). Firstly, the camera is calibrated with
respect to the arm movements, so that predictions of the
ball in the image, correspond to the same position of the
gripper. No calibration with respect to the bouncing surface,
position/velocity mappings, size of the ball, etc. are needed
since these should be robustly dealt with by the model trained
on randomized physics in simulation. The difference between
two consecutive frames are fed directly into our model and
the latent predictions are unrolled until the future predicted
horizontal position is approximately the same as the horizontal
position of the gripper of the arm. Then the generated vertical
position of the ball is sent as a positional set point to the arm.
An experimental run usually lasts for 2-3 seconds, during
which the PR2 robot must infer the physics of the ball, predict
its future trajectory and execute an action to intercept it. Our
model runs at 20Hz on a standard laptop GPU, using IKFast
for inverse kinematics of the arm. We use different types of
ping-pong balls, in order to test how well our model can
reach to balls with different physical properties. After each
experiment (each throw of a ball), the model state is reset -
so in each experiment we evaluate how well we can perform
online system identification. Results can be seen in fig[9}
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Fig. 9: Experiments with PR2. We perform a set of experiments, where a slowly actuated arm of the PR2 robot must
intercept a bouncing ball, using only video as sensory input. We evaluate our method against a random policy feeding
actions at 1Hz/2Hz. We demonstrated that our method can perform fast inference over the physical parameters of interest
(e.g. restitution factor, height of the table) and correct future trajectories. Each experiment lasts about 2 seconds. At each
throw of the ball, the model state is reset - so system identification is performed at every throw of the ball. (Please see the

supplementary video for additional results.)

V. RESULTS AND ANALYSIS

Unified model for physical reasoning. In this work we
present a model for inference of physical parameters and
generation of plausible future states from videos. We observe
that such a model can be trained in an end-to-end fashion
and perform accurate system identification in simulated and
real settings, and subsequently used for control. We constrain
our experiments to a single object and show that using just
a video stream we can perform online system identification.
Importantly, the proposed approach is able to generalise
well to images captured from a real camera, despite only
being trained on simulated data. This highlights the value
of sim2real techniques for interpreting physical parameters
in various applications, and its potential to enable reasoning
about physical properties, from relatively low fidelity sensors
bootstrapped by learning from simulation.

System identification. We observe that the proposed
method can accurately infer different physical parameters,
outperforming baselines from the literature. The magnitude of
gravity and air drag can usually be inferred from observing
just a few frames. Air drag can usually be inferred after
observing a few more frames, as it is a function of both
horizontal and vertical velocity, rather than just the vertical
velocity as in the case of gravity. Restitution factors can be
inferred a few frames after the ball has bounced for the first
time. The rolling coefficient has a higher error, which starts
to decrease towards the end of the videos. While traditional
system identification methods can infer physical properties,
which have a clear effect on the trajectory (such as restitution),
it is challenging to infer properties that jointly contribute to a
certain effect. By using domain randomization and a sim2real
approach, our method can learn the difference in parameters
of trajectories with similar appearance even when trained with
noisy data. As such we can accurately estimate parameters
with similar effect on the dynamics (such as gravity and air
drag), as well as parameters whose effects are not observed
until the end of the trajectory (such as rolling coefficients).
Moreover, we also demonstrate that to an extent detect change
in the parameters, as a video is unrolled (although this requires
system excitation), and extrapolate to unseen parameters.

Forward predictions. We have shown that our model
can perform forward predictions in the latent space, over
parameters of interest such as physical state variables. The

forward predictions bring out key aspects of the evolution
of uncertainty, such as high variability before a bounce and
lower variability soon after, high variability over the stopping
point before rolling is observed, etc. The proposed approach
outperforms both parametric and non-parametric baselines in
its ability to accurately perform forward predictions.
Limitations and future work. We observe in robotics
experiments that our model performs well in real settings.
Nevertheless, we experienced some limitations arising from
making the predictions based on a single image, e.g. the ball
passing behind or in front of the gripper. Thus in the future
it will be beneficial to extend this line of work by inferring
future predictions from multiple sources of video stream from
different locations, or incorporating depth sensing. We note
that our proposed model is independent of the choice of
encoder, decoder and training data. It would be of interest
to explore how such a model would perform with richer
training data (e.g. multiple objects) by using advanced domain
randomization [53] or different encoder-decoder structure [6].

VI. CONCLUSIONS

This paper presents a method for online system identifica-
tion from video. We benchmark the proposed approach against
existing baselines from the literature, showing it outperforms
these both in terms of speed and accuracy of identification. We
then demonstrate the utility of this approach with the task of
stopping a bouncing ball with a robot arm, performing online
identification from a camera feed and using the proposed
model for inference of the physics parameters. Further, we
show its ability to generate future predictions of the ball
position, laying the groundwork for much more sophisticated
predictive motion planning schemes.
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